Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
First-order phase transitions produce abrupt changes to the character of both ground and excited electronic states. Here we conduct electronic compressibility measurements to map the spin phase diagram and Landau level (LL) energies of monolayer in a magnetic field. We resolve a sequence of first-order phase transitions between completely spin-polarized LLs and states with LLs of both spins. Unexpectedly, the LL gaps are roughly constant over a wide range of magnetic fields below the transitions, which we show reflects spin-polarized ground states with opposite spin excitations. These transitions also extend into compressible regimes, with a sawtooth boundary between full and partial spin polarization. We link these observations to the important influence of LL filling on the exchange energy beyond a smooth density-dependent contribution. Our results show that realizes a unique hierarchy of energy scales where such effects induce reentrant magnetic phase transitions tuned by density and magnetic field. Published by the American Physical Society2024more » « less
-
We study multi-valley electron gases in the low density (rs ≫ 1) limit. Here the ground-state is always a Wigner crystal (WC), with additional pseudo-spin order where the pseudo-spins are related to valley occupancies. Depending on the symmetries of the host semiconductor and the values of the parameters such as the anisotropy of the effective mass tensors, we find a striped or chiral pseudo-spin antiferromagnet, or a time-reversal symmetry breaking orbital loop-current ordered pseudo-spin ferromagnet. Our theory applies to the recently-discovered WC states in AlAs and in mono and bilayer transition metal dichalcogenides. We identify a set of interesting electronic liquid crystalline phases that could arise by continuous quantum melting of such WCs.more » « less
An official website of the United States government
